By Topic

Adaptive deployment for pervasive data gathering in connectivity-challenged environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Some current and future pervasive data driven applications must operate in ¿¿extreme¿¿ environments where end-to-end connectivity cannot be guaranteed at all times. In fact, it is likely that in these environments partitions are, rather than exceptions, part of the normal network operation. In this paper, we introduce Cover, a suite of adaptive strategies to control the trajectory of ¿¿infrastructure¿¿ nodes, which are deployed to bridge network partitions and thus play a critical role in data delivery. In particular, we focus on applications where end (or target) nodes are mobile and their mobility is unknown. Our goal is then to deploy and manage infrastructure nodes so that application-level requirements such as reliable data delivery and latency are met while still limiting deployment cost and balancing the load among infrastructure nodes. Cover achieves these goals using a localized and adaptive approach to infrastructure management based on the observed mobility of target nodes. To this end, Cover takes advantage of contact opportunities between infrastructure nodes to exchange information about their covered zones, and thus, help monitor targets in a more efficient fashion. Through extensive simulations, we show how Cover's adaptive features yield a fair distribution of targets per infrastructure node based only on limited network knowledge.

Published in:

Pervasive Computing and Communications (PerCom), 2010 IEEE International Conference on

Date of Conference:

March 29 2010-April 2 2010