By Topic

Correcting Limited-Magnitude Errors in the Rank-Modulation Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tamo, I. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Schwartz, M.

We study error-correcting codes for permutations under the infinity norm, motivated by a novel storage scheme for flash memories called rank modulation. In this scheme, a set of n flash cells are combined to create a single virtual multilevel cell. Information is stored in the permutation induced by the cell charge levels. Spike errors, which are characterized by a limited-magnitude change in cell charge levels, correspond to a low-distance change under the infinity norm. We define codes protecting against spike errors, called limited-magnitude rank-modulation codes (LMRM codes), and present several constructions for these codes, some resulting in optimal codes. These codes admit simple recursive, and sometimes direct, encoding and decoding procedures. We also provide lower and upper bounds on the maximal size of LMRM codes both in the general case, and in the case where the codes form a subgroup of the symmetric group. In the asymptotic analysis, the codes we construct outperform the Gilbert-Varshamov-like bound estimate.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 6 )