By Topic

Dirichlet Class Language Models for Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jen-Tzung Chien ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Chuang-Hua Chueh

Latent Dirichlet allocation (LDA) was successfully developed for document modeling due to its generalization to unseen documents through the latent topic modeling. LDA calculates the probability of a document based on the bag-of-words scheme without considering the order of words. Accordingly, LDA cannot be directly adopted to predict words in speech recognition systems. This work presents a new Dirichlet class language model (DCLM), which projects the sequence of history words onto a latent class space and calculates a marginal likelihood over the uncertainties of classes, which are expressed by Dirichlet priors. A Bayesian class-based language model is established and a variational Bayesian procedure is presented for estimating DCLM parameters. Furthermore, the long-distance class information is continuously updated using the large-span history words and is dynamically incorporated into class mixtures for a cache DCLM. Different language models are experimentally evaluated using the Wall Street Journal (WSJ) corpus. The amount of training data and the size of vocabulary are evaluated. We find that the cache DCLM effectively characterizes the unseen -gram events and stores the class information for long-distance language modeling. This approach outperforms the other class-based and topic-based language models in terms of perplexity and recognition accuracy. The DCLM and cache DCLM achieved relative gain of word error rate by 3% to 5% over the LDA topic-based language model with different sizes of training data .

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 3 )