Cart (Loading....) | Create Account
Close category search window
 

Adaptive Control and the NASA X-15-3 Flight Revisited

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dydek, Z.T. ; Dept. of Mech. Eng., MIT, Cambridge, MA, USA ; Annaswamy, A.M. ; Lavretsky, E.

In this paper, a new generation of hypersonic vehicles offers a far more effective way of launching small satellites or other vehicles into low-Earth orbit than expendable rockets. Additionally these aircraft facilitate quick response and global strike capabilities. Control of hypersonic vehicles is challenging due to the changes in the aircraft dynamics as the manuever takes the aircraft over large flight envelopes.The field of adaptive control began with the motivation that a controller that can adjust its parameters online could generate improved performance over a fixed-parameter counterpart. Subsequently, sobering lessons of tradeoffs between stability and performance directed the evolution of the field toward the design, analysis, and synthesis of stable adaptive systems. Various adaptive control methods have been developed for controlling linear and nonlinear dynamic systems with parametric and dynamic uncertainties.With the benefit of hindsight and subsequent research, the paper revisit the events of 1967 by examining "how and what if" scenarios.we analyze the X-15-3 aircraft dynamics and the Honeywell MH-96 adaptive controller in an effort to better understand how the sequence of events and the interplay between the controller and the aircraft dynamics might have led to the instability and resulting crash. It follows with a depiction of a Lyapunov-stability-based adaptive controller that incorporates gain scheduling and accommodates actuator magnitude saturation, which we denote as the gain-scheduled, magnitude-saturation-accommodating.

Published in:

Control Systems, IEEE  (Volume:30 ,  Issue: 3 )

Date of Publication:

June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.