Cart (Loading....) | Create Account
Close category search window
 

Direction-of-Arrival Estimation Using a Mixed \ell _{2,0} Norm Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyder, M.M. ; Dept. of Electr. Eng., Univ. of Newcastle, Callaghan, NSW, Australia ; Mahata, K.

A set of vectors is called jointly sparse when its elements share a common sparsity pattern. We demonstrate how the direction-of-arrival (DOA) estimation problem can be cast as the problem of recovering a joint-sparse representation. We consider both narrowband and broadband scenarios. We propose to minimize a mixed 2,0 norm approximation to deal with the joint-sparse recovery problem. Our algorithm can resolve closely spaced and highly correlated sources using a small number of noisy snapshots. Furthermore, the number of sources need not be known a priori. In addition, our algorithm can handle more sources than other state-of-the-art algorithms. For the broadband DOA estimation problem, our algorithm allows relaxing the half-wavelength spacing restriction, which leads to a significant improvement in the resolution limit.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.