By Topic

Reverberation Model-Based Decoding in the Logmelspec Domain for Robust Distant-Talking Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Armin Sehr ; Chair of Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg, Erlangen, Germany ; Roland Maas ; Walter Kellermann

The REMOS (REverberation MOdeling for Speech recognition) concept for reverberation-robust distant-talking speech recognition, introduced in “Distant-talking continuous speech recognition based on a novel reverberation model in the feature domain” (A. Sehr , in Proc. Interspeech, 2006, pp. 769-772) for melspectral features, is extended to logarithmic melspectral (logmelspec) features in this contribution. Thus, the favorable properties of REMOS, including its high flexibility with respect to changing reverberation conditions, become available in the more competitive logmelspec domain. Based on a combined acoustic model consisting of a hidden Markov model (HMM) network and a reverberation model (RM), REMOS determines clean-speech and reverberation estimates during recognition. Therefore, in each iteration of a modified Viterbi algorithm, an inner optimization operation maximizes the joint density of the current HMM output and the RM output subject to the constraint that their combination is equal to the current reverberant observation. Since the combination operation in the logmelspec domain is nonlinear, numerical methods appear necessary for solving the constrained inner optimization problem. A novel reformulation of the constraint, which allows for an efficient solution by nonlinear optimization algorithms, is derived in this paper so that a practicable implementation of REMOS for logmelspec features becomes possible. An in-depth analysis of this REMOS implementation investigates the statistical properties of its reverberation estimates and thus derives possibilities for further improving the performance of REMOS. Connected digit recognition experiments show that the proposed REMOS version in the logmelspec domain significantly outperforms the melspec version. While the proposed RMs with parameters estimated by straightforward training for a given room are robust to a mismatch of the speaker-microphone distance, their performance significantly decr- - eases if they are used in a room with substantially different conditions. However, by training multi-style RMs with data from several rooms, good performance can be achieved across different rooms.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:18 ,  Issue: 7 )