By Topic

Load Forecasting Using Hybrid Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Madasu Hanmandlu ; Department of Electrical Engineering, IIT Delhi, New Delhi, INDIA ; Bhavesh Kumar Chauhan

This paper presents two hybrid neural networks derived from fuzzy neural networks (FNN): wavelet fuzzy neural network (WFNN) using the fuzzified wavelet features as the inputs to FNN and fuzzy neural network (FNCI) employing the Choquet integral as the outputs of FNN. The learning through FNCI is simplified by the use of q-measure and the speed of convergence of the parameters is increased by reinforced learning. The underlying fuzzy models of these hybrid networks are a modified form of fuzzy rules of Takagi-Sugeno model. The number of fuzzy rules is found from a fuzzy curve corresponding to each input-output by counting the total number of peaks and troughs in the curve. The models can forecast hourly load with a lead time of 1 h as they deal with short-term load forecasting. The results of the two hybrid networks using Indian utility data are compared with ANFIS and other conventional methods. The performance of the proposed WFNN is found superior to all the other compared methods.

Published in:

IEEE Transactions on Power Systems  (Volume:26 ,  Issue: 1 )