By Topic

Design and Performance of Frequency Selective Surface With Integrated Photodiodes for Photonic Calibration of Phased Array Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dorsey, W.M. ; Radar Div., U.S. Naval Res. Lab., Washington, DC, USA ; McDermitt, C.S. ; Bucholtz, F. ; Parent, M.G.

The design, fabrication, and integration of a frequency selective surface (FSS) with integrated photodiodes to allow for photonic calibration of phased array antennas is presented. The design includes embedding electrically short dipole antennas in each unit cell of the FSS, with a zero-biased photodiode placed across the gap of the diode. Fibers from an optical distribution network are passed through the honeycomb core of the frequency selective surface and pigtailed to the photodiodes. The RF performance of the frequency selective surface with integrated optics is investigated via simulations and measurements, and the results show that the structure maintains RF-transparency.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 8 )