By Topic

Efficient Current-Based Hybrid Analysis of Wire Antennas Mounted on a Large Realistic Aircraft

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei-Jiang Zhao ; Department of Electrical and Computer Engineering, National University of Singapore, Singapore ; Joshua Le-Wei Li ; Li Hu

An efficient hybrid analysis which hybridizes surface-wire integral equations (SWIE) with physical optics (PO) approximation is presented for wire antennas attached to an electrically large aircraft platform. In the analysis, the whole surface of the platform and antennas is divided into three regions, namely, the method of moments (MoM) region, the PO region and a region referred to as the joint PO-MoM (POM) region in this paper. The MoM region, generally, the smallest one among the three regions, includes wires, wire-surface junctions and a small part of the platform surface surrounding the junctions. A large part of the remaining platform surface forms the PO region with the rest being the POM region which is situated between the MoM and PO regions. The POM region is treated as a MoM region on the one hand so that the total MoM region is sufficiently large to well characterize the platform-attached antennas, whereas it is also regarded as a PO region on the other hand so that its interaction with the PO region needs not to be precisely considered so as to drastically reduce computational requirements.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:58 ,  Issue: 8 )