Cart (Loading....) | Create Account
Close category search window

Physical Meaning of Perturbative Solutions for Scattering From and Through Multilayered Structures With Rough Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Imperatore, P. ; Dept. of Biomed., Electron. & Telecommun. Eng., Univ. of Naples Federico II, Naples, Italy ; Iodice, Antonio ; Riccio, Daniele

Theoretical formulas without a clear comprehension of their intrinsic meaning are of difficult use in the context of practical applications. In this paper, we investigate on the physical meaning of existing first-order solutions for the field scattered by layered structures with rough interfaces, which were derived by Imperatore in the framework of perturbation theory. To capture the intrinsic significance of the closed-form scattering solutions, suitable expansions are rigorously performed by leveraging on local scattering descriptors. The obtained series expansions, which can be seen as ray series, can be then accurately analyzed showing that each term has a direct physical explanation. The analysis is carried out for both from- and through-layered-structure scattering configurations. As a result, analytical perturbative solutions turn out to be completely interpretable by simple physical concepts, so that the global scattering response can be interpreted as the superposition of single-scattering interaction mechanisms taking place locally, which are filtered by the layered structure. The meaning of the first-order approximation is also discussed in the layered structure context. Finally, we give a complete explanation for the scattering enhancement phenomenon contemplated in the first-order limit.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.