Cart (Loading....) | Create Account
Close category search window
 

A Through-Dielectric Radar Imaging System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Charvat, G.L. ; Lincoln Lab., Massachusetts Inst. of Technol., Lexington, MA, USA ; Kempel, Leo C. ; Rothwell, E.J. ; Coleman, C.M.
more authors

Through-lossy-slab radar imaging will be shown at stand-off ranges using a low-power, ultrawideband (UWB), frequency modulated continuous wave (FMCW) radar system. FMCW is desirable for through-slab applications because of the signal gain resulting from pulse compression of long transmit pulses (1.926-4.069 GHz chirp in 10 ms). The difficulty in utilizing FMCW radar for this application is that the air-slab boundary dominates the scattered return from the target scene and limits the upper bound of the receiver dynamic range, reducing sensitivity for targets behind the slab. A method of range-gating out the air-slab boundary by significant band-limiting of the IF stages facilitates imaging of low radar cross section (RCS) targets behind the slab. This sensor is combined with a 1D linear rail and utilized as a rail synthetic aperture radar (SAR) imaging system. A 2D model of a slab and cylinder shows that image blurring due to the slab is negligible when the SAR is located at a stand-off range of 6 m or greater, and thus, the two-way attenuation due to wave propagation through the slab is the greatest challenge at stand-off ranges when the air-slab boundary is range-gated out of the scattered return. Measurements agree with the model, and also show that this radar is capable of imaging target scenes of cylinders and rods 15.24 cm in height and 0.95 cm in diameter behind a 10 cm thick lossy dielectric slab. Further, this system is capable of imaging free-space target scenes with transmit power as low as 5 pW, providing capability for RCS measurement.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.