By Topic

Modeling Sparse Connectivity Between Underlying Brain Sources for EEG/MEG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Stefan Haufe ; Berlin Institute of Technology , Berlin, Germany ; Ryota Tomioka ; Guido Nolte ; Klaus-Robert Müller
more authors

We propose a novel technique to assess functional brain connectivity in electroencephalographic (EEG)/magnetoencephalographic (MEG) signals. Our method, called sparsely connected sources analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: 1) the EEG/MEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model; 2) the demixing is estimated jointly with the source MVAR parameters; and 3) overfitting is avoided by using the group lasso penalty. This approach allows us to extract the appropriate level of crosstalk between the extracted sources and, in this manner, we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data and compare it to a number of existing algorithms with excellent results.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 8 )