By Topic

Demand Response Scheduling by Stochastic SCUC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parvania, M. ; Electr. Eng. Dept., Sharif Univ. of Technol., Tehran, Iran ; Fotuhi-Firuzabad, M.

Considerable developments in the real-time telemetry of demand-side systems allow independent system operators (ISOs) to use reserves provided by demand response (DR) in ancillary service markets. Currently, many ISOs have designed programs to utilize the reserve provided by DR in electricity markets. This paper presents a stochastic model to schedule reserves provided by DR in the wholesale electricity markets. Demand-side reserve is supplied by demand response providers (DRPs), which have the responsibility of aggregating and managing customer responses. A mixed-integer representation of reserve provided by DRPs and its associated cost function are used in the proposed stochastic model. The proposed stochastic model is formulated as a two-stage stochastic mixed-integer programming (SMIP) problem. The first-stage involves network-constrained unit commitment in the base case and the second-stage investigates security assurance in system scenarios. The proposed model would schedule reserves provided by DRPs and determine commitment states of generating units and their scheduled energy and spinning reserves in the scheduling horizon. The proposed approach is applied to two test systems to illustrate the benefits of implementing demand-side reserve in electricity markets.

Published in:

Smart Grid, IEEE Transactions on  (Volume:1 ,  Issue: 1 )