By Topic

Plasmon Enhancement of Luminescence by Metal Nanoparticles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sun, G. ; Dept. of Phys. & Eng., Univ. of Massachusetts Boston, Boston, MA, USA ; Khurgin, J.B.

We present a simple analytical yet rigorous model that adequately describes the luminescence enhancement of optical emitters that are placed in the vicinity of metal nanoparticles of subwavelength dimensions. The theory takes into account the radiative decay of the surface plasmon mode supported by the metal nanospheres-a basic phenomenon that has been ignored in electrostatic treatment. Using the example of Au nanospheres embedded in the GaN dielectric, we show that enhancement for each case depends strongly on the original radiative efficiency of the emitter, the nanoparticle size, and the separation between the emitter and metal nanosphere. We demonstrate that strong enhancement favors the closely spaced emitters and metal nanospheres, but putting them too close to each other does not always produce additional enhancement. Thus, our model provides analytical treatment of the luminescence quenching and can be used to optimize both nanoparticle size and its separation from the emitter to yield maximum enhancement factor.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 1 )