By Topic

Design, Construction, and Control of a Stand-Alone Energy-Conditioning System for PEM-Type Fuel Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Malo, S. ; Inst. d''Organitzacio i Control de Sistemes Ind., Univ. Politec. de Catalunya, Barcelona, Spain ; Grino, R.

This paper presents the development of an energy-conditioning system for a proton exchange membrane (PEM) type fuel cell (FC). The developed system provides 230 V ac rms at 50 Hz, with a nominal output power of 1 kVA, and is able to handle sporadic high-power demands up to 5 kVA. An auxiliary power unit (APU), using a bank of supercapacitors as energy-storing device, provides this extra power during a certain amount of time. The output current ripple and step response constraints of the FC unit are considered in the design. A frequency-decoupling scheme is used, in which the FC provides only the low-frequency requirements, while the fast/high-frequency demands are supplied by the APU. A detailed description is given for its different constructive modules, their control design, and implementation.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 10 )