By Topic

A Doppler Robust Max-Min Approach to Radar Code Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
De Maio, Antonio ; Dipt. di Ing. Biomed. Elettron. e delle Telecomun., Univ. degli Studi di Napoli Federico II, Naples, Italy ; Huang, Yongwei ; Piezzo, M.

This correspondence considers the problem of robust waveform design in the presence of colored Gaussian disturbance under a similarity and an energy constraint. We resort to a max-min approach, where the worst case detection performance (over the possible Doppler shifts) is optimized with respect to the radar waveform under the previously mentioned constraints. The resulting optimization problem is a non-convex Quadratically Constrained Quadratic Program (QCQP) with an infinite number of constraints, which is NP-hard in general and typically difficult to solve. Hence, we propose an algorithm with a polynomial computational complexity to generate a good sub-optimal solution for the aforementioned QCQP. The analysis, conducted in comparison with some known radar waveforms, shows that the sub-optimal solutions by the algorithm lead to high-quality radar signals.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 9 )