By Topic

Nonlinear Bayesian Filtering for Denoising of Electrocardiograms Acquired in a Magnetic Resonance Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oster, J. ; Interventional & Diagnostic Adaptive Imaging Lab., Nancy Univ., Nancy, France ; Pietquin, O. ; Kraemer, M. ; Felblinger, J.

ECGs are currently acquired during magnetic resonance examinations. This “hostile” environment highly distorts ECG signals, due to the high-static magnetic field, RF pulses and fast switching magnetic gradients. Specific signal processing is then required since the ECG signal is used for image synchronization with heart activity (or triggering) and for patient monitoring. A new set of two magnetic field gradient (MFG) artifact reduction methods, based on ECG and MFG artifact modelings and Bayesian filtering, is herein presented and will be called Bayesian gradient artifact reduction monitoring (BAGARRE-M) and BAGARRE-triggering. These algorithms overcome the limitations of state-of-the-art methods and enable accurate processing of very noisy ECG acquisitions during MRI. Whether for triggering or monitoring purposes, the presented methods overcome state-of-the-art techniques with both better QRS detection accuracy and signal denoising quality.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 7 )