By Topic

A Study of Geometry Effects on the Performance of Ballistic Deflection Transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kaushal, V. ; Dept. of Electr. & Comput. Eng., Univ. of Massachusetts Lowell, Lowell, MA, USA ; Iñiguez-de-la-Torre, I. ; Irie, H. ; Guarino, G.
more authors

We present the results of an experimental study of dimensional ratios dependencies on the performance of a ballistic deflection transistor (BDT) operating in a quasi-ballistic regime. Experimental transconductance change based on geometry variations is studied for smaller and larger devices with channel width of 300 and 500 nm, respectively. Transconductance variation for a series of drain biases is also observed for a specific geometry and dimension. By means of Monte Carlo modeling we report the effect of different geometry parameters on the transfer characteristics of BDTs. The strength of the gate control in the InGaAs channel is analyzed.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 6 )