By Topic

Neuronal Activity Evoked in the Inferior Colliculus of the Cat by Surface Macroelectrodes and Penetrating Microelectrodes Implanted in the Cochlear Nucleus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Douglas McCreery ; Huntington Medical Research Institutes, Pasadena, USA ; Martin Han ; Victor Pikov

Persons lacking functional auditory nerves cannot benefit from cochlear implants, but an auditory brainstem implant (ABI) utilizing stimulating electrodes adjacent to or on their cochlear nucleus (CN) can restore some hearing. We are investigating the feasibility of supplementing these surface electrodes with penetrating microstimulating electrodes within the ventral CN (VCN), and how the two types of electrodes can be used synergistically. Multiunit neuronal responses evoked by VCN electrical stimulation with surface electrodes and microelectrodes were recorded in the inferior colliculus (ICC) of five cats. The findings are consistent with those from patients with type II neurofibromatosis who received ABIs with both surface and microelectrodes. The patients described percepts from their microelectrodes as more similar to pure tones than those from their surface electrodes, consistent with the greater tonotopic selectivity of microelectrodes in the cats' VCN. Also, the patients describe percepts from their surface electrodes as louder than those from the microelectrodes, while in the cat, the neuronal activity evoked in the ICC by the surface electrodes tended to be greater. This concordance helps to validate our cat model as a means of investigating the synergistic use of surface and penetrating electrodes in a clinical ABI.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:57 ,  Issue: 7 )