Cart (Loading....) | Create Account
Close category search window

Network resource allocation for competing multiple description transmissions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ying Li ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Tian, C. ; Diggavi, S.N. ; Mung Chiang
more authors

Providing real-time multimedia services over a besteffort network is challenging due to the stringent delay requirements in the presence of complex network dynamics. Multiple description (MD) coding is one approach to transmit the media over diverse (multiple) paths to reduce the detrimental effects caused by path failures or delay. The novelty of this work is to investigate the resource allocation in a network, where there are several competing MD coded streams. This is done by considering a framework that chooses the operating points for asymmetric MD coding to maximize total quality of the users, while these streams are sent over multiple routing paths. The framework is based on the theoretical modeling where we consider two descriptions and high source coding rate region approximated within small constants. We study the joint optimization of multimedia (source) coding and congestion control in wired networks. These ideas are extended to joint source coding and channel coding in wireless networks. In both situations, we propose distributed algorithms for optimal resource allocation. In the presence of path loss and competing users, the service quality to any particular MD stream could be uncertain. In such circumstances it might be tempting to expect that we need greater redundancy in the MD streams to protect against such failures. However, one surprising aspect of our study reveals that for large number of users who compete for the same resources, the overall system could benefit through opportunistic (hierarchical) strategies. In general networks, our studies indicate that the user composition varies from conservative to opportunistic operating points, depending on the number of users and their network vantage points.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 5 )

Date of Publication:

May 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.