By Topic

Electrostatic micro torsion mirrors for an optical switch matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Toshiyoshi, H. ; Inst. of Ind. Sci., Tokyo Univ., Japan ; fujita, H.

We have developed a new type of compact optical switch using silicon micromachining technique. Torsion mirrors (300 μm×600 μm) supported by thin polysilicon beams (16 μm wide, 320 μm long, and 0.4 μm thick) are arranged in a 2×2 matrix (total size 3 mm×5 mm, t 0.3 mm). The mirrors are independently attracted by electrostatic force of applied bias voltage to redirect the incident light in a free space. Using collimated beam fibers for optical coupling, we obtained small insertion loss (⩽-7.66 dB), considering the length of a light path (⩾10 mm), a large switching contrast (⩾60 dB), and small crosstalk (⩽-60 dB). The fabrication yield was higher than 80% thanks to the newly developed releasing technique that used a silicon oxide diaphragm as an etch-stop layer and as a mechanical support in the process. Holding voltage (⩽50 V) was lower than the voltage to attract the mirror (100~150 V) because of the hysteresis of angle-voltage characteristic of electrostatic operation

Published in:

Microelectromechanical Systems, Journal of  (Volume:5 ,  Issue: 4 )