Cart (Loading....) | Create Account
Close category search window
 

Quantum information processing: cryptography, computation, and teleportation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Spiller, T.P. ; Math. Group, Hewlett-Packard Labs., Bristol, UK

Present information technology is based on the laws of classical physics. However, advances in quantum physics have stimulated interest in its potential impact on such technology. This article is an introductory review of three aspects of quantum information processing, cryptography, computation, and teleportation. The author serves up hors d'oeuvres on the relevant parts of quantum physics and the sorts of quantum systems which might form the building blocks for quantum processors. Quantum cryptography utilizes states of individual quantum systems for the transfer of conventional classical bits of information. The impossibility of measuring quantum systems without disturbing them guarantees the detection of eavesdropping and hence secure information transfer is possible. In a sense, teleportation is the inverse of cryptography, using more robust classical bits to faithfully transfer a quantum state through a noisy environment. Quantum computation utilizes the evolving quantum state of a complex system, which consists of many interacting individuals. If such a machine could be built, it would be capable of solving some problems which are intractable on any conventional computer; he illustrates this with Shor's (see Proc. 35th IEEE Symposium on Foundations of Computer Science, p.124, 1994) quantum factoring algorithm. Details are given of the current experimental achievements, proposals, and prospects for the future and of the patents granted to date

Published in:

Proceedings of the IEEE  (Volume:84 ,  Issue: 12 )

Date of Publication:

Dec 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.