By Topic

An analytical approximation to the block error rate in Nakagami-m non-selective block fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Toyserkani, A.T. ; Commun. Syst. Group, Charmers Univ. of Technol., Gothenburg, Sweden ; Strom, E.G. ; Svensson, A.

With few exceptions, an analytical closed-form expression for the block error rate (BLER) is lacking in block fading channels. Thus, the BLER is often obtained by numerical methods, such as Monte-Carlo simulations, resulting in additional computational complexity. In this paper, we propose a single-parameter analytical approximation for the BLER in flat, block-fading Nakagami-m channels, which significantly reduces the computational overhead. The low computational cost of the approximation makes it feasible to include the BLER in the objective function of larger optimization problems.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:9 ,  Issue: 5 )