By Topic

Smart Flexible Just-in-Time Transmission and Flowgate Bidding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hedman, K.W. ; Dept. of Ind. Eng. & Oper. Res., Univ. of California at Berkeley, Berkeley, CA, USA ; O'Neill, R.P. ; Fisher, E.B. ; Oren, S.S.

There is currently a national push to create a smarter grid. Currently, the full control of transmission assets is not built in network optimization models. With more sophisticated modeling of transmission assets, it is possible to better utilize the current infrastructure to improve the social welfare. Co-optimizing the generation with the network topology has been shown to reduce the total dispatch cost. In this paper, we propose the concept of just-in-time transmission. This concept is predicated on the fact that transmission that is a detriment to network efficiency can be kept offline when not needed and, with the proper smart grid/advanced technology, can be switched back into service once there is a disturbance. We determine which lines to have offline based on the optimal transmission switching model previously proposed. A secondary topic of this paper focuses on flowgate bidding. Approved by the Federal Energy Regulatory Commission and implemented within the SPP and NYISO networks, flowgate bidding is defined as allowing a line's flow to exceed its rated capacity for a short period of time for a set penalty, i.e., price. We demonstrate the effectiveness of these models by testing them on large-scale ISO network models.

Published in:

Power Systems, IEEE Transactions on  (Volume:26 ,  Issue: 1 )