Cart (Loading....) | Create Account
Close category search window
 

Detection of Vegetation Light-Use Efficiency Based on Solar-Induced Chlorophyll Fluorescence Separated From Canopy Radiance Spectrum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liangyun Liu ; Center for Earth Obs. & Digital Earth, Chinese Acad. of Sci. (CAS), Beijing, China ; Zhanhui Cheng

Photosynthetic light-use efficiency (LUE) is an important indictor of plant photosynthesis, but it is not yet assessable by remote sensing. The recent research on the separation of solar-induced chlorophyll fluorescence (ChlF) from the hyperspectral data indicates the possibility of detecting LUE. In this study, we presented a novel solution for monitoring LUE from hyperspectral data. Experiments at leaf level and canopy level were carried out on winter wheat (C3 plant functional type) on 18 April, 2008 and summer maize (C4 plant functional type) on 5 July, 2008 by synchronously measuring daily canopy radiance spectra and leaf or canopy LUE. The solar-induced chlorophyll fluorescence signals at 760 nm and 688 nm were separated from the reflected radiance spectra based on Fraunhofer lines in two oxygen absorption bands. The results showed that LUE was inversely related to the relative chlorophyll fluorescence. The leaf-level LUE models for winter wheat were built based on relative ChlF at bands of 688 nm (R2=0.78) and 760 nm (R2=0.64), whereas correlation coefficients of the canopy-level LUE models for summer maize on relative ChlF at the same bands were 0.63 and 0.77, respectively.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:3 ,  Issue: 3 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.