By Topic

A Low-Complexity Message-Passing Algorithm for Reduced Routing Congestion in LDPC Decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mohsenin, T. ; Dept. of Electr. & Comput. Eng., Univ. of California, Davis, CA, USA ; Truong, D.N. ; Baas, B.M.

A low-complexity message-passing algorithm, called Split-Row Threshold, is used to implement low-density parity-check (LDPC) decoders with reduced layout routing congestion. Five LDPC decoders that are compatible with the 10GBASE-T standard are implemented using MinSum Normalized and MinSum Split-Row Threshold algorithms. All decoders are built using a standard cell design flow and include all steps through the generation of GDS II layout. An Spn = 16 decoder achieves improvements in area, throughput, and energy efficiency of 4.1 times, 3.3 times, and 4.8 times, respectively, compared to a MinSum Normalized implementation. Postlayout results show that a fully parallel Spn = 16 decoder in 65-nm CMOS operates at 195 MHz at 1.3 V with an average throughput of 92.8 Gbits/s with early termination enabled. Low-power operation at 0.7 V gives a worst case throughput of 6.5 Gbits/s-just above the 10GBASE-T requirement-and an estimated average power of 62 mW, resulting in 9.5 pj/bit. At 0.7 V with early termination enabled, the throughput is 16.6 Gbits/s, and the energy is 3.7 pJ/bit, which is 5.8?? lower than the previously reported lowest energy per bit. The decoder area is 4.84 mm2 with a final postlayout area utilization of 97%.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 5 )