By Topic

On the Applications of the Coupled-Line Composite Right/Left-Handed Unit Cell

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahmed E. Fouda ; Electronics and Communication Engineering department, Faculty of Engineering, Ain Shams University, Cairo, Egypt ; Amr M. E. Safwat ; Hadia El-Hennawy

This paper presents two applications of the coupled-line composite right/left-handed (CL-CRLH) unit cell, compact-size rat-race hybrid, and arbitrary coupling directional coupler. Benefiting from the slow-wave effect present in both the right- and left-handed regions of the CL-CRLH unit cell, two compact-size rat-race hybrids were realized. 60% area reduction was achieved while preserving the conventional rat-race performance. The arbitrary coupling directional coupler, which operates in the stopband around the balance frequency, showed excellent in-band and out-of-band performance. To reduce its size, a slow-wave CL-CRLH unit cell was proposed. The proposed unit cell achieves a 38% size reduction. The rat-race hybrids were fabricated on microstrip technology, whereas the directional couplers were fabricated on stripline technology. Simplified circuit models for the unit cells were developed. Theoretical expectations were confirmed by electromagnetic simulations and measurements.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:58 ,  Issue: 6 )