By Topic

Comparative Analysis of NoCs for Two-Dimensional Versus Three-Dimensional SoCs Supporting Multiple Voltage and Frequency Islands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seiculescu, C. ; Integrated Syst. Lab., Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Murali, S. ; Benini, L. ; De Micheli, G.

In many of today's system-on-chip (SoC) designs, the cores are partitioned into multiple voltage and frequency islands (VFIs), and the global interconnect is implemented using a packet-switched network on chip (NoC). In such VFI-based designs, the benefits of 3-D integration in reducing the NoC power or delay are unclear, as a significant fraction of power is spent in link-level synchronization, and stacked designs may impose many synchronization boundaries. In this brief, we show the quantitative benefits of the 3-D technology on NoC power and delay values for such application-specific designs. We show a design flow for building application-specific NoCs for both 2-D and 3-D SoCs with multiple VFIs. We present a detailed case study of NoCs designed using the flow for a mobile platform. Our results show that power savings strongly depend on the number of VFIs used (up to 32% reduction). This motivates the need for an early architectural space exploration, as allowed by our flow. Our experiments also show that the reduction in delay is only marginal when moving from 2-D to 3-D systems (up to 11%), if both are designed efficiently.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:57 ,  Issue: 5 )