Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Maneuver-Based Trajectory Planning for Highly Autonomous Vehicles on Real Road With Traffic and Driver Interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Glaser, S. ; Lab. on Interactions between Vehicles, Infrastruct. & Drivers (LIVIC), French Nat. Inst. on Transp. Res. & Safety (INRETS), Versailles, France ; Vanholme, B. ; Mammar, S. ; Gruyer, D.
more authors

This paper presents the design and first test on a simulator of a vehicle trajectory-planning algorithm that adapts to traffic on a lane-structured infrastructure such as highways. The proposed algorithm is designed to run on a fail-safe embedded environment with low computational power, such as an engine control unit, to be implementable in commercial vehicles of the near future. The target platform has a clock frequency of less than 150 MHz, 150 kB RAM of memory, and a 3-MB program memory. The trajectory planning is performed by a two-step algorithm. The first step defines the feasible maneuvers with respect to the environment, aiming at minimizing the risk of a collision. The output of this step is a target group of maneuvers in the longitudinal direction (accelerating or decelerating), in the lateral direction (changing lanes), and in the combination of both directions. The second step is a more detailed evaluation of several possible trajectories within these maneuvers. The trajectories are optimized to additional performance indicators such as travel time, traffic rules, consumption, and comfort. The output of this module is a trajectory in the vehicle frame that represents the recommended vehicle state (position, heading, speed, and acceleration) for the following seconds.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:11 ,  Issue: 3 )