Cart (Loading....) | Create Account
Close category search window
 

Fundamental Frequency and Regularity of Cardiac Electrograms With Fourier Organization Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Barquero-Pérez, O. ; Dept. of Signal Theor. & Commun., Univ. Rey Juan Carlos, Madrid, Spain ; Rojo-Álvarez, J.L. ; Caamaño, A.J. ; Goya-Esteban, R.
more authors

Dominant frequency analysis (DFA) and organization analysis (OA) of cardiac electrograms (EGMs) aims to establish clinical targets for cardiac arrhythmia ablation. However, these previous spectral descriptions of the EGM have often discarded relevant information in the spectrum, such as the harmonic structure or the spectral envelope. We propose a fully automated algorithm for estimating the spectral features in EGM recordings This approach, called Fourier OA (FOA), accounts jointly for the organization and periodicity in the EGM, in terms of the fundamental frequency instead of dominant frequency. In order to compare the performance of FOA and DFA-OA approaches, we analyzed simulated EGM, obtained in a computer model, as well as two databases of implantable defibrillator-stored EGM. FOA parameters improved the organization measurements with respect to OA, and averaged cycle length and regularity indexes were more accurate when related to the fundamental (instead of dominant) frequency, as estimated by the algorithm (p <; 0.05 comparing f0 estimated by DFA and by FOA). FOA yields a more detailed and robust spectral description of EGM compared to DFA and OA parameters.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.