By Topic

Direct Identification of Bacteria in Blood Culture Samples Using an Electronic Nose

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Trincavelli, M. ; Center for Appl. Autonomous Sensor Syst., Orebro Univ., Orebro, Sweden ; Coradeschi, S. ; Loutfi, A. ; Söderquist, B.
more authors

In this paper, we introduce a method for identification of bacteria in human blood culture samples using an electronic nose. The method uses features, which capture the static (steady state) and dynamic (transient) properties of the signal from the gas sensor array and proposes a means to ensemble results from consecutive samples. The underlying mechanism for ensembling is based on an estimation of posterior probability, which is extracted from a support vector machine classifier. A large dataset representing ten different bacteria cultures has been used to validate the presented methods. The results detail the performance of the proposed algorithm and show that through ensembling decisions on consecutive samples, significant reliability in classification accuracy can be achieved.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 12 )