By Topic

Real-time focus range sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. K. Nayar ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; M. Watanabe ; M. Noguchi

Structures of dynamic scenes can only be recovered using a real-time range sensor. Depth from defocus offers an effective solution to fast and dense range estimation. However, accurate depth estimation requires theoretical and practical solutions to a variety of problems including recovery of textureless surfaces, precise blur estimation, and magnification variations caused by defocusing. Both textured and textureless surfaces are recovered using an illumination pattern that is projected via the same optical path used to acquire images. The illumination pattern is optimized to maximize accuracy and spatial resolution in computed depth. The relative blurring in two images is computed using a narrow-band linear operator that is designed by considering all the optical, sensing, and computational elements of the depth from defocus system. Defocus invariant magnification is achieved by the use of an additional aperture in the imaging optics. A prototype focus range sensor has been developed that has a workspace of 1 cubic foot and produces up to 512×480 depth estimates at 30 Hz with an average RMS error of 0.2%. Several experimental results are included to demonstrate the performance of the sensor

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:18 ,  Issue: 12 )