By Topic

An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gedney, S.D. ; Dept. of Electr. Eng., Kentucky Univ., Lexington, KY, USA

A perfectly matched layer (PML) absorbing material composed of a uniaxial anisotropic material is presented for the truncation of finite-difference time-domain (FDTD) lattices. It is shown that the uniaxial PML material formulation is mathematically equivalent to the perfectly matched layer method published by Berenger (see J. Computat. Phys., Oct. 1994). However, unlike Berenger's technique, the uniaxial PML absorbing medium presented in this paper is based on a Maxwellian formulation. Numerical examples demonstrate that the FDTD implementation of the uniaxial PML medium is stable, equal in effectiveness as compared to Berenger's PML medium, while being more computationally efficient

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:44 ,  Issue: 12 )