By Topic

Computational Comparisons of Hemodynamics between 3D and 2D Models of CABG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Aike Qiao ; Coll. of Life Sci. & Bioeng., Beijing Univ. of Technol., Beijing, China ; Bo Chu ; Yunkang Sui ; Bingfeng Jiao
more authors

Previous numerical studies based on 2D coronary artery bypass graft (CABG) model for the optimization of anastomosis configuration has indicated that large graft-host diameter ratio and small junction angle has better hemodynamics. The validity of representing a 3D CABG model with a 2D CABG model is not clear. Four different 3D CABG models and one 2D CABG model were constructed, and their hemodynamics were analyzed and compared in the present study in order to verify this validity. Hemodynamics of the five CABG models were numerically simulated using commercial software ANSYS 9.0. The results showed that the distribution of flow patterns, wall shear stresses and wall shear stress gradients in the 2D model and 3D models were not significantly different. Large or same diameter of graft compared with that of the parent artery, and small suture angle is profitable in clinical application from the point of view of hemodynamics. It can be concluded that the conclusions drawn from the optimization of 2D CABG model is credible and can be used for reference; it is feasible to simplify a 3D CABG model to a 2D model for hemodynamics analysis.

Published in:

Biomedical Engineering and Computer Science (ICBECS), 2010 International Conference on

Date of Conference:

23-25 April 2010