Cart (Loading....) | Create Account
Close category search window

High Performance Dictionary-Based String Matching for Deep Packet Inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang, Y.E. ; Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, SC, USA ; Hoang Le ; Prasanna, V.K.

Dictionary-Based String Matching (DBSM) is used in network Deep Packet Inspection (DPI) applications virus scanning and network intrusion detection. We propose the Pipelined Affix Search with Tail Acceleration (PASTA) architecture for solving DBSM with guaranteed worst-case performance. Our PASTA architecture is composed of a Pipelined Affix Search Relay (PASR) followed by a Tail Acceleration Finite Automaton (TAFA). PASR consists of one or more pipelined Binary Search Tree (pBST) modules arranged in a linear array. TAFA is constructed with the Aho-Corasick goto and failure functions in a compact multi-path and multi-stride tree structure. Both PASR and TAFA achieve good memory efficiency of 1.2 and 2 B/ch (bytes per character) respectively and are pipelined to achieve a high clock rate of 200 MHz on FPGAs. Because PASTA does not depend on the effectiveness of any hash function or the property of the input stream, its performance is guaranteed in the worst case. Our prototype implementation of PASTA on an FPGA with 10 Mb on-chip block RAM achieves 3.2 Gbps matching throughput against a dictionary of over 700 K characters. This level of performance surpasses the requirements of next-generation security gateways for deep packet inspection.

Published in:

INFOCOM, 2010 Proceedings IEEE

Date of Conference:

14-19 March 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.