By Topic

Non-Preemptive Buffer Management for Latency Sensitive Packets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Feldman, M. ; Technion - Israel Inst. of Technol., Haifa, Israel ; Naor, J.

The delivery of latency sensitive packets is a crucial issue in real time applications of communication networks. Such packets often have a firm deadline and a packet becomes useless if it arrives after its deadline. The deadline, however, applies only to the packet's journey through the entire network; individual routers along the packet's route face a more flexible deadline. We consider policies for admitting latency sensitive packets at a router. Each packet is tagged with a value and a packet waiting at a router loses value over time as its probability of arriving at its destination decreases. The router is modeled as a non-preemptive queue, and its objective is to maximize the total value of the forwarded packets. When a router receives a packet, it must either accept it (and possibly delay future packets), or reject it immediately. The best policy depends on the set of values that a packet can take. We consider three natural settings: unrestricted model, real-valued model, where any value above 1 is allowed, and an integral-valued model. We obtain the following results. For the unrestricted model, we prove that there is no constant competitive ratio algorithm. The real valued model has a randomized 4-competitive algorithm and a matching lower bound. We also give for the last model a deterministic lower bound of ¿3 ¿ 4.236, almost matching the previously known 4.24-competitive algorithm. For the integral-valued model, we show a deterministic 4-competitive algorithm, and prove that this is tight even for randomized algorithms.

Published in:

INFOCOM, 2010 Proceedings IEEE

Date of Conference:

14-19 March 2010