By Topic

Tree-structured Data Regeneration in Distributed Storage Systems with Regenerating Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Li ; Sch. of Comput. Sci., Fudan Univ., Shanghai, China ; Shuang Yang ; Xin Wang ; Baochun Li

Distributed storage systems provide large-scale reliable data storage by storing a certain degree of redundancy in a decentralized fashion on a group of storage nodes. To recover from data losses due to the instability of these nodes, whenever a node leaves the system, additional redundancy should be regenerated to compensate such losses. In this context, the general objective is to minimize the volume of actual network traffic caused by such regenerations. A class of codes, called regenerating codes, has been proposed to achieve an optimal trade-off curve between the amount of storage space required for storing redundancy and the network traffic during the regeneration. In this paper, we jointly consider the choices of regenerating codes and network topologies. We propose a new design, referred to as RCTREE, that combines the advantage of regenerating codes with a tree-structured regeneration topology. Our focus is the efficient utilization of network links, in addition to the reduction of the regeneration traffic. With the extensive analysis and quantitative evaluations, we show that RCTREE is able to achieve a both fast and stable regeneration, even with departures of storage nodes during the regeneration.

Published in:

INFOCOM, 2010 Proceedings IEEE

Date of Conference:

14-19 March 2010