By Topic

Model-Based Feature Enhancement for Reverberant Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krueger, A. ; Dept. of Commun., Univ. of Paderborn, Paderborn, Germany ; Haeb-Umbach, R.

In this paper, we present a new technique for automatic speech recognition (ASR) in reverberant environments. Our approach is aimed at the enhancement of the logarithmic Mel power spectrum, which is computed at an intermediate stage to obtain the widely used Mel frequency cepstral coefficients (MFCCs). Given the reverberant logarithmic Mel power spectral coefficients (LMPSCs), a minimum mean square error estimate of the clean LMPSCs is computed by carrying out Bayesian inference. We employ switching linear dynamical models as an a priori model for the dynamics of the clean LMPSCs. Further, we derive a stochastic observation model which relates the clean to the reverberant LMPSCs through a simplified model of the room impulse response (RIR). This model requires only two parameters, namely RIR energy and reverberation time, which can be estimated from the captured microphone signal. The performance of the proposed enhancement technique is studied on the AURORA5 database and compared to that of constrained maximum-likelihood linear regression (CMLLR). It is shown by experimental results that our approach significantly outperforms CMLLR and that up to 80% of the errors caused by the reverberation are recovered. In addition to the fact that the approach is compatible with the standard MFCC feature vectors, it leaves the ASR back-end unchanged. It is of moderate computational complexity and suitable for real time applications.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 7 )