Cart (Loading....) | Create Account
Close category search window
 

High-Speed Optical Label Recognition Technique Using an Optical Digital-to-Analog Conversion and Its Application to Optical Label Switch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sawada, K. ; Precision & Intell. Lab., Tokyo Inst. of Technol., Yokohama, Japan ; Uenohara, H.

Operation performance of a 40 Gbps, 2-bit Optical Digital-to-Analog converter (ODAC) and its application to optical label switching systems have been investigated. The device is composed of a 1 × 2 multi-mode interference (MMI) splitter, one-bit-delay line, and a 2 × 1 MMI combiner. It has a high-mesa structure fabricated on InP-based materials. Dependence of output signal level on input signal wavelength and device temperature was measured. Due to the optical phase variation caused by the refractive index change with wavelength and temperature, output signal level varied, and it agreed well with simulation results. Four-level signals were generated and a quarter dependence of phase on temperature and wavelength compared with that for 10-Gbit/s was verified. Next, operation tolerance of the ODAC as an optical label processor, bit error rate (BER) of the digital-to-analog (DA)-converted signal was simulated. The tolerance against fluctuation of light source power, optical phase in the device, optical chirp, and extinction ratio of input signal was estimated. For all parameters, operation tolerance could be kept, but that for 40 Gbps is smaller than that for 10 Gbps. Then, autonomous label processing and optical label switching performance using a gate pulse generation scheme based on phase-shifted preamble was investigated. Optical DA conversion and three kinds of optical label were recognized at a bit rate of 40 Gbps, and optical packet transfer could be confirmed.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 13 )

Date of Publication:

July1, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.