By Topic

An Efficient Tree Classifier Ensemble-Based Approach for Pedestrian Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanwu Xu ; University of Science and Technology of China, Hefei, China ; Xianbin Cao ; Hong Qiao

Classification-based pedestrian detection systems (PDSs) are currently a hot research topic in the field of intelligent transportation. A PDS detects pedestrians in real time on moving vehicles. A practical PDS demands not only high detection accuracy but also high detection speed. However, most of the existing classification-based approaches mainly seek for high detection accuracy, while the detection speed is not purposely optimized for practical application. At the same time, the performance, particularly the speed, is primarily tuned based on experiments without theoretical foundations, leading to a long training procedure. This paper starts with measuring and optimizing detection speed, and then a practical classification-based pedestrian detection solution with high detection speed and training speed is described. First, an extended classification/detection speed metric, named feature-per-object (fpo), is proposed to measure the detection speed independently from execution. Then, an fpo minimization model with accuracy constraints is formulated based on a tree classifier ensemble, where the minimum fpo can guarantee the highest detection speed. Finally, the minimization problem is solved efficiently by using nonlinear fitting based on radial basis function neural networks. In addition, the optimal solution is directly used to instruct classifier training; thus, the training speed could be accelerated greatly. Therefore, a rapid and accurate classification-based detection technique is proposed for the PDS. Experimental results on urban traffic videos show that the proposed method has a high detection speed with an acceptable detection rate and a false-alarm rate for onboard detection; moreover, the training procedure is also very fast.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:41 ,  Issue: 1 )