By Topic

A Five-Decade Dynamic-Range Ambient-Light-Independent Calibrated Signed-Spatial-Contrast AER Retina With 0.1-ms Latency and Optional Time-to-First-Spike Mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Juan Antonio Leñero-Bardallo ; Instituto de Microelectrónica de Sevilla, Centro Nacional de Microelectrónica, Consejo Superior de Investigaciones Científicas, Sevilla, Spain ; Teresa Serrano-Gotarredona ; Bernabé Linares-Barranco

Address Event Representation (AER) is an emergent technology for assembling modular multiblock bio-inspired sensory and processing systems. Visual sensors (retinae) are among the first AER modules to be reported since the introduction of the technology. Spatial-contrast AER retinae are of special interest since they provide highly compressed data flow without reducing the relevant information required for performing recognition. The reported AER contrast retinae perform a contrast computation based on the ratio between a pixel's local light intensity and a spatially weighted average of its neighborhood. This resulted in compact circuits but with the penalty of all pixels generating output signals even if they sensed no contrast. In this paper, we present a spatial-contrast retina with a signed output: Contrast is computed as the relative difference (not the ratio) between a pixel's local light and its surrounding spatial average and normalized with respect to ambient light. As a result, contrast is ambient light independent, includes a sign, and the output will be zero if there is no contrast. Furthermore, an adjustable thresholding mechanism has been included, such that pixels remain silent until they sense an absolute contrast above the adjustable threshold. The pixel contrast-computation circuit is based on Boahen's biharmonic operator contrast circuit, which has been improved to include mismatch calibration and adaptive-current-based biasing. As a result, the contrast-computation circuit shows much less mismatch, is almost insensitive to ambient light illumination, and biasing is much less critical than in the original voltage biasing scheme. The retina includes an optional global reset mechanism for operation in ambient-light-independent Time-to-First-Spike contrast-computation mode. A 32 32 pixel test prototype has been fabricated in 0.35-m CMOS. Experimental results are provided.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:57 ,  Issue: 10 )