Cart (Loading....) | Create Account
Close category search window
 

Statistical Feature Extraction for Classification of Image Spam Using Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soranamageswari, M. ; Dept. of Comput. Sci., LRG Gov. Arts Coll. for Women, Tirupur, India ; Meena, C.

When the usages of electronic mail continue, unsolicited bulk email also continues to grow. These unsolicited bulk emails occupies server storage space and consumes large amount of network bandwidth. To overcome this serious problem, Anti-spam filters become a common component of internet security. Recently, Image spamming is a new kind of method of email spamming in which the text is embedded in image or picture files. Identifying and preventing spam is one of the top challenges in the internet world. Many approaches for identifying image spam have been established in literature. The artificial neural network is an effective classification method for solving feature extraction problems. In this paper we present an experimental system for the classification of image spam by considering statistical image feature histogram and mean value of an block of image. A comparative study of image classification based on color histogram and mean value is presented in this paper. The experimental result shows the performance of the proposed system and it achieves best results with minimum false positive.

Published in:

Machine Learning and Computing (ICMLC), 2010 Second International Conference on

Date of Conference:

9-11 Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.