By Topic

Vehicle Detection in Static Images Using Color and Corner Map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Aarthi, R. ; Amrita Sch. of Eng., Coimbatore, India ; Padmavathi, S. ; Amudha, J.

This paper presents an approach to identify the vehicle in the static images using color and corner map. The detection of vehicles in a traffic scene can address wide range of traffic problems. Here an attempt has been made to reduce the search time to find the possible vehicle candidates thereby reducing the computation time without a full search. A color transformation is used to project all the colors of input pixels to a new feature space such that vehicle pixels can be easily distinguished from non-vehicle ones. Bayesian classifier is adopted for verifying the vehicle pixels from the background. Corner map is used for removing the false detections and to verify the vehicle candidates.

Published in:

Recent Trends in Information, Telecommunication and Computing (ITC), 2010 International Conference on

Date of Conference:

12-13 March 2010