Cart (Loading....) | Create Account
Close category search window

Single donor induced negative differential resistance in silicon n-type nanowire metal-oxide-semiconductor transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bescond, M. ; IM2NP, UMR CNRS 6242, Bât. IRPHE, 49 rue Joliot Curie, BP 146, 13384 Marseille Cedex 13, France ; Lannoo, M. ; Raymond, L. ; Michelini, F.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

This work presents a theoretical study of the influence of a single donor on the transport properties of silicon nanowire transistors. Using a three-dimensional self-consistent nonequilibrium Green’s function approach we find that the donor states induce transitions from resonant to antiresonant Breit–Wigner interferences when increasing the gate or drain voltages. Numerical and analytical calculations demonstrate that these interferences strongly degrade the transistor performances but can also generate a remarkable negative differential resistance behavior. The robustness of this phenomenon with respect to a change of the defect position in the channel is an opportunity to develop novel device properties.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 9 )

Date of Publication:

May 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.