Cart (Loading....) | Create Account
Close category search window
 

You'll never walk alone: Modeling social behavior for multi-target tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pellegrini, S. ; Comput. Vision Lab., ETH Zurich, Zurich, Switzerland ; Ess, A. ; Schindler, K. ; Van Gool, L.

Object tracking typically relies on a dynamic model to predict the object's location from its past trajectory. In crowded scenarios a strong dynamic model is particularly important, because more accurate predictions allow for smaller search regions, which greatly simplifies data association. Traditional dynamic models predict the location for each target solely based on its own history, without taking into account the remaining scene objects. Collisions are resolved only when they happen. Such an approach ignores important aspects of human behavior: people are driven by their future destination, take into account their environment, anticipate collisions, and adjust their trajectories at an early stage in order to avoid them. In this work, we introduce a model of dynamic social behavior, inspired by models developed for crowd simulation. The model is trained with videos recorded from birds-eye view at busy locations, and applied as a motion model for multi-people tracking from a vehicle-mounted camera. Experiments on real sequences show that accounting for social interactions and scene knowledge improves tracking performance, especially during occlusions.

Published in:

Computer Vision, 2009 IEEE 12th International Conference on

Date of Conference:

Sept. 29 2009-Oct. 2 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.