By Topic

A QoS optical packet switching system: architectural design and experimental demonstration [Topics in Optical Communications]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yuang, M.C. ; Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yu-Min Lin ; Ju-Lin Shih ; Po-Lung Tien
more authors

Optical packet switching has been considered a prominent paradigm for future WDM networks to efficiently support a multitude of applications with diverse quality of service requirements. In this article we present the architectural design and experimental demonstration of a 10 Gb/s QoS optical packet switching system (QOPSS) for WDM networks. It embodies a set of many-to-one space switches, each of which handles the switching solely for a cluster of wavelengths. With the cluster-based optical switch design, QOPSS trades off limited statistical multiplexing gains for higher system scalability. By many-to-one, multiple packets that are carried by different internal wavelengths are scheduled to switch to the same output port but receive different delays afterward. QOPSS adopts downsized feed-forward optical buffers, yielding drastic reduction in packet loss probability in an economical manner. Significantly, through using four-wave-mixing wavelength converters at the output section, QOPSS permits optical packet preemption, thus achieving effectual QoS differentiation. The article presents both simulation and experimental testbed results to demonstrate the feasibility and superior packet loss/QoS performance of the system.

Published in:

Communications Magazine, IEEE  (Volume:48 ,  Issue: 5 )