By Topic

A single-chip GaAs RF transceiver for 1.9-GHz digital mobile communication systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yamamoto, Kazuya ; Optoelectron. & Microwave Devices R&D Lab., Mitsubishi Electr. Corp., Hyogo, Japan ; Maemura, K. ; Kasai, Nobuyuki ; Yoshii, Y.
more authors

A 1.9-GHz single-chip GaAs RF transceiver has been successfully developed using a planar self-aligned gate FET suitable for low-cost and high-volume production. This IC includes a negative voltage generator for 3-V single voltage operation and a control logic circuit to control transmit and receive functions, together with RF front-end analog circuits-a power amplifier, an SPDT switch, two attenuators for transmit and receive modes, and a low-noise amplifier. The IC can deliver 22-dBm output power at 30% efficiency with 3-V single power supply, The new negative voltage generator operates with charge time of less than 200 ns, producing a low level of spurious outputs below -70 dBc through the power amplifier. The generator also suppresses gate-bias voltage deviations to within 0.05 V even when gate current of -144 μA flows. The IC incorporates a new interface circuit between the logic circuit and the switch which enables it to handle power outputs over 24 dBm with only an operating voltage of 3 V. This transceiver will be expected to enable size reductions in telephones for 1.9-GHz digital mobile communication systems

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:31 ,  Issue: 12 )