By Topic

Exploiting Quasiperiodicity in Motion Correction of Free-Breathing Myocardial Perfusion MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wollny, G. ; Dept. of Electron. Eng., Univ. Politech. de Madrid, Madrid, Spain ; Ledesma-Carbayo, M.J. ; Kellman, P. ; Santos, A.

Free-breathing image acquisition is desirable in first-pass gadolinium-enhanced magnetic resonance imaging (MRI), but the breathing movements hinder the direct automatic analysis of the myocardial perfusion and qualitative readout by visual tracking. Nonrigid registration can be used to compensate for these movements but needs to deal with local contrast and intensity changes with time. We propose an automatic registration scheme that exploits the quasiperiodicity of free breathing to decouple movement from intensity change. First, we identify and register a subset of the images corresponding to the same phase of the breathing cycle. This registration step deals with small differences caused by movement but maintains the full range of intensity change. The remaining images are then registered to synthetic references that are created as a linear combination of images belonging to the already registered subset. Because of the quasiperiodic respiratory movement, the subset images are distributed evenly over time and, therefore, the synthetic references exhibit intensities similar to their corresponding unregistered images. Thus, this second registration step needs to account only for the movement. Validation experiments were performed on data obtained from six patients, three slices per patient, and the automatically obtained perfusion profiles were compared with profiles obtained by manually segmenting the myocardium. The results show that our automatic approach is well suited to compensate for the free-breathing movement and that it achieves a significant improvement in the average Pearson correlation coefficient between manually and automatically obtained perfusion profiles before ( 0.87 ±0.18) and after (0.96 ±0.09) registration.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:29 ,  Issue: 8 )