By Topic

Epidemic-Based Information Dissemination in Wireless Mobile Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young Myoung Ko ; Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, USA ; Natarajan Gautam

In this paper, we consider wireless mobile sensor networks under extreme environments where nodes: 1) have local knowledge; 2) have limited computational power; 3) make distributed decisions; and 4) move rapidly over time. Information dissemination in these networks (or gossip) can be modeled via epidemic models that analyze behavior of the system mimicking the way diseases spread (or even gossip for that matter). However, the limitation on computational power and energy of nodes forces us to consider explicit stopping criteria that are seldom done in the literature. Furthermore, harsh environments considered in this paper prevent nodes from transmitting sensed information at specified time slots and hence might cause a large variation in intertransmission time distribution. The objective of this paper is to characterize the dynamics of the information spread and obtain performance measures based on stochastic modeling. We start with modeling information flow using a Markov chain and obtain performance measures such as time to transfer information and fraction of nodes receiving information. Then, we provide a method to obtain those performance measures when the assumption on intertransmission time distribution is relaxed, e.g., time-varying transmission rates and nonexponential intertransmission time distributions, which makes our model more realistic. We make a curious finding in that, for our proposed model, the average fraction of nodes receiving information is a parameter-free constant. We also show that our model is scalable and effective.

Published in:

IEEE/ACM Transactions on Networking  (Volume:18 ,  Issue: 6 )