By Topic

A PDE Formalization of Retinex Theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Morel, J.M. ; CMLA ENS Cachan, Paris, France ; Petro, A.B. ; Sbert, C.

In 1964, Edwin H. Land formulated the Retinex theory, the first attempt to simulate and explain how the human visual system perceives color. His theory and an extension, the “reset Retinex” were further formalized by Land and McCann. Several Retinex algorithms have been developed ever since. These color constancy algorithms modify the RGB values at each pixel to give an estimate of the color sensation without a priori information on the illumination. Unfortunately, the Retinex Land-McCann original algorithm is both complex and not fully specified. Indeed, this algorithm computes at each pixel an average of a very large set of paths on the image. For this reason, Retinex has received several interpretations and implementations which, among other aims, attempt to tune down its excessive complexity. In this paper, it is proved that if the paths are assumed to be symmetric random walks, the Retinex solutions satisfy a discrete Poisson equation. This formalization yields an exact and fast implementation using only two FFTs. Several experiments on color images illustrate the effectiveness of the Retinex original theory.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 11 )